Step of Proof: fseg_extend
11,40
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
fseg
extend
:
.....subterm..... T:t1:n
1.
T
: Type
2.
l1
:
T
List
3.
v
:
T
4.
l2
:
T
List
5.
L
:
T
List
6.
l2
= (
L
@
l1
)
7. ||
l1
|| < ||
l2
||
8.
l2
[(||
l2
|| - (||
l1
||+1))] =
v
9.
(
null(
L
))
10.
L'
:
T
List
11.
L
= (
L'
@ [last(
L
)])
last(
L
) =
v
latex
by (((Assert 0 < ||
L
||)
THENL [(((DVar `L')
CollapseTHEN (((All Reduce)
CollapseTHEN (Auto'
C
))
))
); Id]
)
CollapseTHEN (((((RevHypSubst (-5) 0)
CollapseTHENA (Auto
))
)
CollapseTHEN (
C
((StrongHypSubst (-7) 0)
CollapseTHENA (((Auto')
CollapseTHEN (((HypSubst (-1) 0)
Co
CollapseTHEN (Auto'))
))
))
))
))
latex
C
1
:
C1:
12. 0 < ||
L
||
C1:
last(
L
) = (
L
@
l1
)[(||
L
@
l1
|| - (||
l1
||+1))]
C
.
Definitions
a
<
b
,
#$n
,
||
as
||
,
b
,
,
[
car
/
cdr
]
,
last(
L
)
,
[]
,
l
[
i
]
,
as
@
bs
,
,
t
T
,
,
{
x
:
A
|
B
(
x
)}
,
x
:
A
.
B
(
x
)
,
s
=
t
,
type
List
,
Type
,
A
,
False
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
n
-
m
,
n
+
m
,
-
n
,
A
B
Lemmas
select
wf
,
nat
wf
,
member
wf
,
le
wf
origin